在使用十折交叉验证时,通常可以计算每一折的性能指标(如RMSE、MAPE)并输出。这涉及到在每一折结束后对模型进行评估并记录性能指标的过程。在神经网络中,这通常通过在每一折中保存模型的预测结果,并在整个交叉验证过程结束后计算性能指标来实现。
以下是一个简单的伪代码示例,说明如何在十折交叉验证中计算每一折的性能指标:
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error
import numpy as np
# Assume X_train, y_train are your training data and labels
# Assume model is your neural network model
kf = KFold(n_splits=10, shuffle=True, random_state=42)
rmse_scores = []
mape_scores = []
for train_index, val_index in kf.split(X_train):
X_train_fold, X_val_fold = X_train[train_index], X_train[val_index]
y_train_fold, y_val_fold = y_train[train_index], y_train[val_index]
# Train your neural network model on X_train_fold and y_train_fold
# Make predictions on X_val_fold
y_pred_fold = model.predict(X_val_fold)
# Calculate RMSE and MAPE for this fold
rmse_fold = np.sqrt(mean_squared_error(y_val_fold, y_pred_fold))
mape_fold = np.mean(np.abs((y_val_fold - y_pred_fold) / y_val_fold)) * 100
# Append scores to the lists
rmse_scores.append(rmse_fold)
mape_scores.append(mape_fold)
# Calculate average scores across all folds
average_rmse = np.mean(rmse_scores)
average_mape = np.mean(mape_scores)
print("RMSE scores for each fold:", rmse_scores)
print("MAPE scores for each fold:", mape_scores)
print("Average RMSE:", average_rmse)
print("Average MAPE:", average_mape)
这段代码使用了scikit-learn库中的KFold类来进行十折交叉验证,然后在每一折中训练神经网络模型,计算预测结果的RMSE和MAPE,并将这些指标存储在相应的列表中。最后,计算平均的RMSE和MAPE,并输出每一折的性能指标。确保在实际代码中适配你的数据和神经网络模型。
0 条评论
可输入 255 字